AD-A132 501 CUNCURRENCY CUNITRUL PUK KESILIENI NESTEU IRANDALIIUNS 3]
(U) MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
COMPUTER SCIENCE N A LYNCH FEB 83 MIT/LCS/TR-285
UNCLASSIFIED NO00D014-75-C-0661 F/G 12/1

FEEE
N EEE
%m“u“_—u“_.,_m M=_=

10

125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

o=

. s o
; Ty L R NASSACHUN 1S
. I.\;\B()R:'\‘l‘()R\ l‘()R O NS o
COMPUTER SCIENCF AT THOHNOLOGY

~

DISTRIS UTION STATENENT AT
Approved tor public release; :
I?‘.Atxibutinn Unlimited l

——

MIEE TOS TR-28S

CONCURRENCY CONTROL
FOR RESILIENT
NESTED TRANSACTIONS

Nancy A, Ivnch

Contract N00014-75.¢0-0661

WVR.OFF. /7%

128

Concurrency Control for Resilient Nested Transactions*

Nancy A. Lynch
Massachusetts Institute of Technology
Cambridge, Massachusetts
February, 1983

ABSTRACT

’
JA formal framework is developed for proving correctness of algorithms which implement nested
transactions. In particular, a simple ®action tree® data structure is defined, which describes the
ancestor relationships among executing transactions and also describes the views which different
transactions have of the data. A generalization of “serializability" to the domain of nested
transactions with failures, is defined. A characterization is given for this generalization of
serializability, in terms of absence of cycles in an appropriate dependency relation on transactions. A
slightly simplified version of Moss' locking algorithm is presented in detail, and a careful correctness

proof is given.

The style of correctness proof appears to be quite interesting in its own right. The description of
the algorithm, from its initial specification to its detailed implementation, is presented as a series of
“event-state algebra” levels, each of which "simulates" the previous one in a straightforward way. e

Keywords: Action tree, atomicity, concurrency control, recovery, serializability, transaction,
two-phase locking.

©1983 Massachusetts Institute of Technology, Cambridge, MA. 02139

“This work was supported in part by the NSF under Grant No. MCS70-24370, U.S. Army Research Office Contract
DAAG28-79-C-0155, and Advanced Research Projects Agency of the Department of Defense Contract # NOOD14-75-
C-0661.

1. introduction

In the past few years, there has been considerable research on concurrency control, including
both systems design and theoretical study. The problem is roughly as follows. Data in a large
(centralized or distributed) database is assumed to be accessible to users via transactions, each of
which is a sequential program which can carry out many steps accessing individual data objects. It is
important that the transactions appear to execute "atomically”, i.e. without intervening steps of other
transactions. However, it is also desirable to permit as much concurrent operation of different
transactions as possible, for efficiency. Thus, itis not generally feasible to insist that transactions run
completely serially. A notion of equivalence for executions is defined, where two executions are
equivalent provided they "look the same"” to all transactions and to all data objects. The serializable
executions are just those which are equivalent to serial executions. One goal of concurrency control

design is to insure that all executions of transactions be serializable.

Several characterization theorems have been proved for serializability; generally, they amount to
the absence of cycles in some relation describing the dependencies among the steps of the
transactions. A very large number of concurrency control algorithms have been devised. Typical
algorithms are those based on two-phase locking [EGLT], and those based on timestamps [La].
Although many of these algorithms are very different from each other, they can all be shown to be
correct concurrency control algorithms. The correctness proofs depend on the absence-of-cycles
characterizations for serializability.

More recently, it has been suggested [Re, M, LiS] that some additional structure on transactions
might be useful for programming distributed databases, and even for programming more general
distributed systems. The suggested structure permits transactions to be nested. Thus, a transaction
is not necessarily a sequential program, but rather can consist of (sequential or concurrent) sub-
transactions. The intention is that the sub-transactions are to be serialized with respect to each
other, but the order of serialization need not be completely specified by the writer of the transaction.
This flexibility allows more concurrency in the implementation than would be possible with a single-
level transaction structure consisting of sequential transactions. The general structure allows
transactions to be nested to any depth, with only the leaves of the nesting tree actually pertorming
accesses to data.

Transactions are often used not only as a unit of concurrency, but also as a unit of recovery. ina
nested transaction structure, it is natural to try to localize the effects of failures within the closest
possible level of nesting in the transaction nesting tree. One ig naturally fed to a style of programming
which permits a transaction to create children, and to tolerate the reported failure of some of its

nanacut A

LY

*

UNCLASSIFIED

‘; SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)

: RE. IN! CTIONS
REPORT DOCUMENTATION PAGE BEF O O R
T. R!EO'T NUMBER [z. GOVY ACCESSION No’l- RECIPIENT'S CATALOG NUMBER

MIT/LCS/TR~285 A/

4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED

Concurrency Control for Resilient
Nested Transactions

Technical Report
6. PERFORMING ORG. REPORT NUMBER

1 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(®) |
Nancy A. Lynch N0O0014-75-C-0661 (old)
N00014-83-K-0125 (new)
1
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gilhAgozathnW'nuo:t!E:' TASK
Massachusetts Institute of Technology . Ny
RR014-08-01
Laboratory for Computer Science NR 049-189
545 Technology Square, Cambridge, MA 02139
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
None
4 13. NUMBER OF PAGES
! 4 31
! T8, MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 15. SECURITY CULASS. (of this report)
Office of Naval Research (Code 433) UNCLASSIFIED
Information Sciences Division
800 N. Quincy St. TSa DECLASSIFICATION] COWNGNADING

__A:linp.nn?JlA_ 22217
) 18. OISTRIBUTION STATEMENT (ol thls Report)

Distribution af this document is unlimited.

| _Accession Fop
NTIS GRAsr
| DTIC TAB

Uﬂannounced

O
0]

|l NP
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il different from Report) | ~ ~ °+% ITavtio

Distribution is unlimited. By,

Distribution/
-_

. SUPPLEMENTARY NOTES R v S
Avai) and/op
Special

None

e e B ——
-
[

19. KEY WORDS (Continue on reverse alde If necessary and identify by block number) L

-

——

Action tree, atomicity, concurrency control, recovery, serializ;bility,
transaction, two-phase locking.

20. ABSTRACT (Continue on reverse side If y and } fy by block ber)
Kl
¥
:
N ;
i DD ,’0%"; 1473 eoimion oF 1 wOV 88 13 OBsOLETR
i $/N 0102- LF-014- 6601 SECUMTY CLASHFICATION OF Twis PAGE (When Dota Burere)
1
[]
]
. W A T —— e - o

-
-

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in
all technical reports prepared by or for DoD organizations.

CLAS_ﬂE_[QA]}[a . Since this Report Documentation Page, DD Form 1473, is used in preparing snnouncements, bibliographies, and dets
banks, it shou e unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate

samarer s NN

symbol.
COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Lesve
Blocks 2 and 3 blank

Block 1, Report Number. Eater the unique alphanumeric report number shown on the cover.
] Block 2. Government Accession No. Leeve Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future
retrieval of the document.

Block 4, Title and Subtitle. Enter the title in all capital letters exactly as it appesrs on the publication. Titles should be
unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see
““Abstracting Scientific and Technical Reports of selenne-.'poncond RDT/E,?AD-667 000). If the report has a subtitle, this subtitie
should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If s publication has s
title in @ foreign 1anguage, translate the title into Eaglish,and follow the English transistion with the title in the original language.
Make every effort'to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive
dates of perind covered, such as the life of a contract covered in a finsl contractor report.

‘ ’ Block 6. Performing Organization Report Number. Only bers other than the official report number shown in Block 1, such |
) us series bers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers ¢
are used, leave this space blank. i

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the suthor(s) in conventional
order (for example, John R. Doe or, if author prefers,]. Robert Doe). In addition, list the affiliation of an author if it differs from thet
of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under
\ which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol,
of the performing activity. For contractor or grantee reports enter the name and addreas of the contractor or grantee who the
~ report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10, Program Element, Project, Task Ares, and Work Unit Numbers. Enter here the number code from the applicable
Department of Defense form, such as the DD Form 1498, ‘‘Research and Technology Work Unit Summary’’ or the DD Form 1634,
‘*Research and Development Planning Summary,’® which identifies the program element, project, task area, and work unit or equivalent
under which the work was authorized.

Block 11, Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the

controlling office. (Equates (o funding/sponsoting agency. For definition see DaoD Directive 5200.20, **Distribution Statements on
Technicel Documents.’’)

Block 12, Report Date. Enter here the day, month, and year or month and year as shown on the cover, 3

—— . ——

Block 13. Number of Pages. Enter the total number of pages. ; ;

Block 13, Monitoring Agency Name and Address (if different from Controliing Office). For use when the controlling or funding "
! office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another orgaaization.

cks 15 & 158. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Eater in 1S
- the hwusth::l-:umcnlon of the r:;on. If appropriste, enter in 15a the declassification/downgra: schedule of the report, nsing the
! abbreviations for declassificetion/downgrading schedules listed in paragreph 4-207 of DoD 5200.1-R.

Lo Block 16, Distribution Statement of the Report. Insert here the applicable distribution stetement of the report from DoD
Directive 5200,20, ‘*Distribution Statements on Technicel Documents.”

Bleck 17, Distribution Stat t (of the abatract entered in Block 20, if difterent from the distribution atatement of the report).
Insert here the applicable distribution statement of the abstract from DoD Directive $200.20, **Distribution Statements on Technical Doc-
uments.*”’

¢ Block 18, Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with
. . . Translation of (omy) . . . Presented at conference of . . . To be published in . . .

FESRNUNITS

B‘Igc! 1%, Key Words. Select terms or short phrases that identify the principal subjects covered in the re| , and ere
sufficiently specific :Zld precise to be used as index entries for cataloging, conforming to standard terminology. e DoD **Thesaurus

of Engineering and Scientific Terms*® (TEST). AD-672 000, cen be helpful.

g*gcu 0, Abstract. The sbstract should be a brief (not to exceed 200 worda) factusl summary of the most significent informe-
tion containe 2n the report. If possible, the abstract of & classified report should be uaclassified and the abstract to s wnclessified
should consist of publicly- releasable information. 1f the report contains a significant NW litersture mm“
it here. For information on preparing sbstracts see **Abstracting Scientific and Technical Reports of se-Spoasored

AD-667 000. RU.S. Gevornment Frinting Oftien 1901-808-108/7120 2-1

s Sk e L1

children, using the information about the occurrence of the failures to decide on its further activity.
The intention is that failed transactions are to have no effect on the data or on other transactions.
This style of programming is a generalization of the "recovery block" style of [Ra] to the domain of
concurrent programming. Indeed, this style seems to be especially suitable for programming
distributed systems, since many types of failures of pieces of programs are likely to occur in such
systems.

Reed is currently impiementing a system which uses multiple versions of data to implement nested
transactions which tolerate failures of sub-transactions. Moss has abstracted away from Reed’s
specific implementation of nested transactions, and has presented a clear intuitive description of the
nested transaction model. He has also developed an alternative implementation of the nested
transaction model, based on two-phase locking. This model and implementation are fundamental to
the Argus distributed computing language, now under development by Liskov's group at MIT.

The basic correctness criteria for nested transactions seem to be clear enough, intuitively, to
allow implementors a sufficient understanding of the requirements for their implementation.
However, some subtle issues of correctness have arisen in connection with the behavior of failed
sub-transactions. For example, the Argus group has decided that a pleasant property for an
implementation to have is that all transactions, including even "orphans” (subtransactions of failed
transactions), should see "consistent” views of the data (i.e. views that could occur during an
execution in which they are not orphans). The implementation goes to considerable lengths to try to
insure this property, but it is difficult for the implementors to be sure that they have succeeded.

It seems clear that some basic groundwork is needed before such properties can be proved.
Namely, the theory already developed for concurrency control of single-level transaction systems
without failures needs 10 be generalized to incorporate considerations of nesting and failures. The
model needs to be formal, in order to allow careful specification of all the correctness requirements

the simple and intuitive ones, as well as the rather subtle ones.

This paper begins to develop this groundwork. First, a simple "action tree" structure is defined,
which describes the ancestor relationships among executing transactions and also describes the
views which difterent transactions have of the data. A generalization of serializability to the domain of
nested transactions with failures, is defined. A characterization is given for this generalization of
serializability, in terms of absence of cycles in an appropriate dependency relation on transactions. A
slightly simplified version of Moss' algorithm is presented in detail, and a careful correctness proof is
given.

e e Bt e

The style of correctness proof for the algorithm appears to be quite interesting in its own right.
The description of the algorithm is presented in a series of levels, each of which is an "event-state"
algebra with unary operations, and each (but the first) of which “simulates” the previous one. The
basic problem statement is given as the highest level algebra. and successively lower levels provide
increasing amounts of implementation detail. In particular, both the problem specification and the
implementation are presented as the same kind of mathematical object, an event-state algebra. At
every level, we want to present algorithms with the maximum possible amount of nondeterminism
consistent with correctness, not forcing any unnecessary implementation decisions. Therefore, we
do not describe algorithms in the usual way, using programs with specified flow of control. Rather,

we present algorithms as collections of events with corresponding preconditions.

One novel aspect of the simulations we use, different from the usual notions of "abstraction"
mappings, is that our simulations map single lower level states to sets of higher level states, rather
than just single higher level states. (We call them "possibilities” mappings.) This extra flexibility
seems quite convenient for many implementations, allowing the more "concrete" algebra sometimes
to contain less information than the more "abstract" algebra. For example, it might be easy to prove
correctness of an algorithm which maintains lots of auxiliary information. The correctness of an
algorithm which maintains less information could be proved, in our model, by showing that it

simulates the algorithm which maintains the auxiliary information.

While possibilities mappings are convenient for proving correctness of ordinary centralized
algorithms, they produce their greatest payoff for distributed algorithms. Namely, a distributed
algorithm is described as a special case of an event-state algebra, a "distributed algebra". In a
distributed algebra, the state set is just a Cartesian product, with event preconditions and transitions
defined componentwise. To show that a distributed algebra simulates some other "abstract" algebra,
it suffices to define an appropriate possibilities mapping from the global states of the distributed
algebra, to sets of states of the abstract algebra. It turns out to be extremely natural to describe such
a mapping by first describing a possibilities mapping from the local state of each component to sets of
abstract states. The image of a local state under this mapping just represents the set of possible
global states consistent with the knowledge of the particular component. The possibilities for the
entire distributed algebra are simply obtained by taking the intersection of the possibilities consistent
with the knowledge of all the components.

it appears that this technique extends to give natural proofs of many algorithms, especially
distributed algorithms, and thus warrants further investigation. Goree [G] presents a more complete
(and slightly more general) development of the technique than is presented in this paper.

A g e

e £

S s LT e W o “:5‘?@“ ',‘J"'"‘:"; o

The definitions given in this paper express the most fundamental correctness requirements, but
not subtle conditions such as correctness of orphans' views. Issues of fairness and eventual
progress are not addressed, but rather only safety properties, serializability in particular. Future work
involves extending the framework presented here to allow expression of these other properties, and
to allow correctness proofs for the difficult algorithms which guarantee these properties. Some
further work in these directions has already been carried out: Goree [G] has given a definition for
correctness of orphans’ views, and has given a correctness proof for a complicated algorithm used in
the implementation of Argus to maintain correctness of orphans’ views in the face of transaction
aborts.

Other related work is that of Stark [S]. He is carrying out a very general treatment of event-state
algebras, incorporating considerations of modularity to a much greater extent than is present in this

paper, and handling fairness and eventuality properties as well as safety properties.

2. Event-State Algebras

In this section, we describe the event-state algebra framework.

An event-state algebra A = <A, o, ID, consists of a set A of states, an element ¢ € A, the initial
state, and a set 1 of partial unary operations. In this paper, we will usually refer to an event-state
algebra as simply an algebra.

Let a be a state, and let P = (m,...m) be any finite sequence of operations chosen from OP.
Then @ is said to be valid from a provided b = ”k("k.1("-("1‘a»"') is defined; in this case, b is called
the result of ® applied to a. An infinite sequence of operations is said to be valid from a provided all its
finite prefixes are valid from a. We say that @ is valid provided it is valid from o, and the result of ® is
defined to be the result of ¢ applied to ¢. We write a - b provided there is some finite @, valid from a,
for which b is the result of ¢ applied to a. b is computable provided o i~ b.

Now assume A = <A, g, > and L' = <A’, ¢', [1'> are two algebras. An interpretation of A by A’
is a mapping h: IT' — N U {A}. We extend h to map operation sequences of A' to operation
sequences of A in the obvious way (deleting occurrences of A). An interpretation, h, is a gimulation
of A by A’ provided that h(¢’) is a valid operation sequence for A whenever ¢’ is a valid operation
sequence for A’.

Lemma 1: Assume that A, L' and A" are algebras, that h is a simulation of L by A'
and I’ is a simulation of A’ by A". Then h ¢ h’ is a simulation of A by A".
Proof: Straightforward.

o

Next, we give a sufficient condition for a mapping h to be a simulation. Leth: A’ U IT' = HA) U I1
U {A} be such that h(a') € KA) for all 3’ € A, and h restricted to 1’ is an interpretation. Thenhisa
possibilities mapping from A’ to A provided the following are true:

(a) o € h{o').

Assume 7' € TI'. Assume a and a’ are computable in A and A', respectively, and a € h(a’).
v,- Assume a' € domain(7')and b’ = #'(a’).

(b) Ifh{n’) = = € I, then a € domain(x) and w(a) € h(b’).

: (c)ifh(x’) = A, thena € h(b’).

Lemma 2: Let h be a possibilities mapping from A’ to L. If ' is a valid operation
sequence for A’, and h(®’) = ®, then & is a valid operation sequence for A. In addition, if
@' is finite, a' is the result of ¢’ and a is the result of @, then a € h(a’).

' Proof: By induction on the length of ¢'.

< o
Lemma 3: Any possibilities mapping fzoim A to A is a simulation of A by A'.

Proof: Immediate by Lemma 2.

O

if we think of A’ as a "concrete" algebra, and .A as a more "abstract” algebra, then we see that a
possibilities mapping allows single "concrete” states to be mapped to sets of "abstract” states rather
than just single abstract states. :

e — e e = B -

An algebra, A = <A, ¢, I, is said to be distribyted over a finite index set | using d, provided that A
is the Cartesian product of sets A,, i € |, d is a mapping, d: I1 — |, giving the "doer” of each operation, '
and the following two conditions are satisfied.

- {Local Domain) Leti = d(w). Ifa,b € Aand a, = b, then a € domain(w) if and only if b €
domain{w).

! - (Local Changes) If a, b € domain(w),a’ = #(a),b’ = w(b)anda, = b, thena’, = b',.

We now consider the simulation of an algebra by a distributed algebra. Namely, we define a "local

mapping", from the local state of each component of the distributed algebra to a set of abstract
‘ states. The resuit of this mapping should be thought of as the set of possible abstract states, as far as

ey e —— e B A e -

dhgp o dtiredy o o

BRI it oni i

a particular node can tell. The mapping from a global state of the distributed algebra can then be
defined to yield the intersection of the images of all the component states. The conditions we require
for local mappings are just those which guarantee that the derived global mapping is a possibilities
mapping.

Let A’ = <A, ¢', [1"> be an algebra, distributed over | using d. Let A = <A, o, I1> be any algebra.
Let h be an interpretation from A' to A. Foreachi€ |, let h: A — NA) be such that hi depends on A'a
only -ie.ifa = b, then h,(a) = h,(b). Then we saythathandh,,i € |, form a lgcal mapping from A’ to
A provided the following conditions are satisfied.

(a) For all i € 1, ¢ € ha’).

Assume #' € I, d{w) = i. Assume a and a are computable in 4 and A’, respectively. Assume a €
h.(a’). Assume a’ € domain(n'),and b’ = #'(a’).

(b) ¥ hin') = # € TN, then a € domain(w).
(c)Assumeh(n’) =w€M,j€landa € hi(a'). Then w(a) € hi(b’).

(d) Assume h(n') = A,j€landa € hi(a'), Thena € hi(b‘).
Lemma 4: Let A and A’ = <A’, ¢', [1'> be algebras, where A’ is distributed over
I. Assume that h and h,, i € | form a local mapping from A' to A. Extend hto A’ U T’ by
defining h(a’) = ﬁi ¢ hi@’) Then h is a possibilities mapping from A’ to A.
Proot: We check the three properties of the possibilities mapping definition.

(a) To see that o € h(a'), it suffices to show that ¢ € h(a’) for all i € 1. But this is exactly
the statement ¢f property (a) of the local mapping definition.

Now we assume the hypotheses supplied for parts (b) and (c) of the possibilities
mapping definition. Assume also that d(%’) = i.

{b) Since a € h(a’), it is obvious that a € h,(@’). Property (b) of the local mapping
definition implies that a € domain(x). In order to show that #(a) € h(b'), it suffices to fix an
arbitrary j € | and show that #(a) € hi(b'). Since a € hi(a‘). the needed property follows
from (c) of the local mapping definition.

{c) It suffices to show that a € hi(b') for any j € |. This follows as in the preceding
argument from (d) of the local mapping definition.

a

e e e B - o

If the definitions in this section are to be used in correctness proofs for the widest possible class
of algorithms, they will probably need to be generalized. In particular, it seems appropriate to permit
single operations of a more concrete algebra to be interpreted by sequences of operations of a more
abstract algebra. (See Goree [G] for definitions and uses for this generalization.) Also, sets of initial

states rather than single initial states are probably useful.

3. Action Trees

In this section, basic definitions are given for action trees and serializability.

Let obj be a universal set of data objects. For each x € obij. let values(x) denote the set of values x
can assume. including a distinguished initial value init(x). A value assignment is a total mapping, f,
from obj to values(obj), having the property that f(x) € values(x) for all x € obj.

Let act be a universal set of actions (i.e. transactions). Let U be a distinguished action. We
assume that the actions are configured a priori into a tree, representing their nesting relationship,
with U as the root. For every A € act - {U}. let parent(A} denote a unique parent action for A. Let
siblings denote {(A.B) € act?. parent(A) = parent(B)}. If A € act, let children(A) denote {B € act:
parent(B) = A). If A, B € act, let Ica(A.B) denote the least common ancestor of A and B. If A € act, let
desc(A) (resp. anc(A)) be the set of descendants (resp. ancestors) of A. Let proper-desc(A) {resp.
proper-anc(A)) be the set of proper descendants (resp. ancestors) of A.

it might be convenient for the reader to think of this a priori configuration of all possible actions
into a tree as a preassigned "naming scheme" for actions. That is, the "name” of any action is
assumed to carry within it information which locates that action in this universal tree of actions. in
any particular execution, only some of these possible actions will be "activated”. The (virtual) action
U, the parent of all top-level actions, has been added for the sake of uniformity.

Let seq C siblings be any fixed partial order, representing sequential dependency. if (A,B) € seq,
it means that A is constrained to run before B. For the sake of notational simplicity, we are assuming
this relation is also fixed a priori; this amount to assuming that the "name"” of any action carries within
it information about which siblings the action can assume have completed. The use of an arbitrary
partial order is a generalization of both the total order usually specified for the steps which occur
within a single-level transaction, and the unconstrained order usually specified among the
transactions themselves. We also assume a priori determination of which actions actually access
data, which objects they access and the functions they perform on those objects: let accesses denote
the leaves of the tree described above. (We assume that U € accesses, so that the set of actions is

Y WA et

i
i
-‘QI -

nontrivial.) Let object: accesses — obj be a fixed function. If object(A) = x, we say that A is an
access to x. For A € accesses, let update{A): values(object(A)) — values(object(A)) be a fixed
function. Let sameobiject denote {{A,B) € accesses 2: object(A) = object(B)}.

| am departing from the usual approach in serializability theory by including a particular function
(rather than an uninterpreted function) in the definition of an action which accesses data. This is
because | want to state correctness conditions in terms of preserving certain relationships among the
data values seen and written. This "semantic" style of correctness condition seems to me to be more
basic than the usual correctness definitions in serializability theory, in that it says less to constrain the

implementation.

Note that the usual read and write operations of serializability theory can be regarded as special
cases of my accesses. Namely, "read accesses" have the identity function as their associcated
update function, while "write accesses" have an associated update function which is a constant

function.

Next, | give a way of describing a "snapshot” of a particular execution. using a structure called an
"action tree". An action tree can be regarded as the generalization of the log from ordinary

serializability theory.

An action tree T has components vertices,, agting. ggmmittng. aborted, and Iabng, where

- vertices, is a finite subset of act, closed under the parent operation: if A € vertices, - {U}, then
parent(A) € vertices,, (These represent the actions which have ever been created during the current

execution.)

- activer, committed, and aborted, comprise a partition of vertices,, (These classifications
indicate the current status of each action that has ever been created. When a non-access action is
first created, it is classified as active. At some later time, its classification can be changed to either
committed or aborted. By "committed”, we mean that the action is committed relative to its parent,
but not necessarily committed permanently. Permanent commit of an action would be represented by

classification of all ancestors of the action, except for U, as commiitted.)

- label,: datasteps, — values(obj), (where datasteps. = committed, N accesses), with label (A)
€ values (object(A)). (The label of an access to an object is intended to represent the value read by
that access. Since the access has an associated function, the value which the access writes into the
object is deducible from the value read, and therefore need not be explicitly represented.)

Let done, denote committed . U abortedT. Let status. be defined by status (A) = ‘active’ (resp.

‘committed’, 'aborted’) provided A € activeT (resp. committedT. abortedT). Let accesses. = verticesT

M accesses, accesses(x) = {B € accesses;: object(B) = x}, and datasteps {x) = {B € datasteps.:
object(B) = x}. Let seq, denote seq n (verticesr)"’

Next, we describe actions whose existence is intended to be known to other actions (i.e. not
masked from those other actions by intervening failures or active actions). For A € vertices, let
visible (A) denote {B € vertices, : anc(B) N proper-descfica(A,B)) C committed.(}. That is,
visibleT(A) is just the set of actions whose existence is known to action A, because they and all their
ancestors, up to and not including some ancestor of A, have committed. For A € vertices,, x € obj, let
v_i§i_tleTLAgQ denote visibleT(A) N datastepsr(x). The following lemma describes elementary
properties of "visibility".

Lemma 5: Let T be an action tree, A, B, C € vertices,.
a. If A € desc(B), then B € visible(A).

b.A€ visibleT(B) if and only if A € visible (Ica(A,B)).
c. If A € visible (B) and B € visible (C), then A € visible(C).
d.If A € desc(B)and C € visible,(B), then ce¢ visibleg(A).

e. If A € desc(B)and A € visibIeT(C). thenB € visibIeT(C).

a. Immediate.

b. Immediate from the fact that Ica(A,B) = Ica(A,lca(A,B)).

c.Let D € anc(A) N proper-desc(ica(A,C)). We must show that D €
committed.. If D € proper-desc(lca(A,B)), then the fact that A € visible,(B)
implies the result. So assume that D ¢ proper-desc(ica(A,B)). It must be the
case that D € anc(ica(A,B)), and that Ica(B,C) = Ica(A,C). Thus, D € anc(B)
N proper-desc(ica(B,C)), so the fact that B € visibleT(C) implies the result.

d. Immediate from parts a and c.

©. immediate from parts a and ¢.

j
,’
;
|

‘t’}" EINR '

N 3

10

tA € vertices,, then we say A is live in T provided anc(A) M aborted, = 9, and we say A is dead

in T otherwise.

Lemma6:1fA B€ verticesT. AisliveinT,and B € visibIeT(A), thenBislivein T.

Proof: If B is dead in T, then there exists C € anc(B) N aborted,. We know C ¢
proper-desc(ica(A,B)), since B € visible;(A). Thus, C € anc(lca(A,B)) C anc(A), so A is
dead in T, a contradiction.

a

If x € obj and s is a finite sequence of datasteps, then we define result(x,s) as follows. If s is the

empty sequence, then result(x,s) init(x). Otherwise, let s = s'A. Then result(x,s) =

update(A)(result(x,s’)) if A involves x, = result(x,s’) otherwise.

If Sis a set, and < is a total arder an the elements af S, then we let «KS; <>> denote the sequence

consisting of the elements of S, in the order given by <.

Let T be an action tree. A partial order p C siblings is linearizing for T provided p totally orders all
siblings in T. A linearizing partiai order p induces a total order, inducﬂT_p. on datasteps,, in the
obvious way. If A€ datasteps.(x) and p is a linearizing partial order for T, let m&sn DLA) denote <¢{B
€ visible (A x): (B.A) € inducedT'p and B # A); inducedm)).

A linearizing partial order p for T is said to be a gerializing partial order for T provided p is
consistent with seq, and labelT(A) = result(x,predsT p(A)). for all A € datastepsT(x). T is said to be
serializable provided there exists some serializing partial order tor T.

Stating the simplest correctness requirements only requires consideration of actions whose
effects become "permanent”. Therefore, we restrict attention to a portion of T, as follows. A new
action tree perm(T) is defined as follows.

- vertices = visible,(U). (Lemma Se shows that perm(T) is a tree.)

perm(T)

- if A € vertices then statusw mm(A) = status (A).

perm(T) '

A€ datastepspe,mm ,then Iabelw mm(A) = label,(A).

Lemma 7:If T is an action tree and A, B € verticeswmm. then B € visible m(A).
perm(T) = visible (U), Lemma 5d implies that B € visibleT(A).

(A), since the status of each vertex is the same in T and perm(T).

Proof: Since B € vertices

ThenB € visiblepe'mm

o

1"

We will require that any tree T created by our algorithm have perm(T) serializable.

Note that the style in which serializability is defined here constrains the implementation less than
the type of definition used in “traditional™ concurrency control theory. The earlier definitions regard
the data as external to the concurrency control algorithm; the algorithm is to take requests for data
accesses and translate them into actual accesses, observing appropriate rules. Generally, the
accesses performed by the concurrency control algorithm simply obtain the latest version of the data
object. A clue that the earlier definitions are too constraining is that they do not apply unchanged to
algorithms such as Reed's, which use sophisticated management of versions of the data. The earlier
definitions require extensions [KP, BG] to handle algorithms such as Reed's. These extensions still
regard the data as external to the concurrency control algorithm, and so the modified correctness
conditions contain explicit information about particular "versions” of the data objects. It seems to
me, however, that the appearance of serializability, in terms of the values seen by the accesses, is
really alt that matters - it is possible that this appearance could be preserved by some algorithm which

does not operate in terms of versions at ail.

The less constraining approach which is taken here is to regard the data as internal to the
concurrency control algorithm, at least for the purpose of stating the basic correctness conditions.
Thus, the definitions introduced in this paper are intended to be applicable to algorithms which use
single versions of data objects, algorithms that use multiple versions of data objects, as well as to

other implementations as yet unforeseen.

4. An Algebra Based on Action Trees

We now define a set of operations on action trees. That is, we define an algebra A = <A, ¢, [,
where A is the set of action trees, o is the trivial action tree with the single vertex U, with status
'active’, and [1 contains the four kinds of operations described in (a)-(d) below. We define the
operations as follows. First, we let C denote the set of all action trees, T, for which perm(T) is
serializable. (In particular, ¢ € C.) We constrain the ranges of all of the operations to be subsets of
C. Within this constraint, we define the domain by giving a precondition on action trees T, and use
assignment notation to describe the effect of the operationon T.

In all operations, we assume that A € act - {U}.

(a) create A

(a1) Precondition

(a11) A ¢ vertices,.

12

{a12) parent(A) € verticesT . committedT.
(a13)1f (B,A) €Eseqand B # A, then B € doneT.

» : (a2) Effect

| (a21) verticesT — verticesT U {A}.
(a22) statusT(A) + 'active’.

(b) commit,,, A ¢ accesses

‘; . {b1) Precondition

(b11)A € active,.

(b12) children(A) N vertices, - done,.

(b2) Effect
(b21) statusT(A) +— ‘committed’.

(c) abort A ?

(c1) Precondition
(c11) A € active,.

(c2) Effect
~ (c21) statusT(A) + 'aborted'.

(d)pertorm, A € accesses, x = object(A), u € values(x)

(d1) Precondition
(dINAE active,.

(d2) Effect

(d21) statusT(A) + 'committed’'.
(d22) label (A) — u.

5. Augmented Action Trees

e e o e e b —

L The definitions which make specific reference to versions are still useful in conjunction with the
approach of this paper. Their role is in supplying sufficient conditions for serializability, and thereby
helping to organize correctness proofs.

In this section, a new structure called an "augmented action tree"” is defined. Augmented action
trees are just action trees with a little additional information. Namely, in the spirit of the earlier
definitions, some information is added which describes a sequence of versions for each data object.

Serializability is defined for augmented action trees. It is seen that serializability for augmented action
trees implies serializability for corresponding action trees. Moreover, serializability for augmented
action trees has a cycle-tree characterization similar to those in usual concurrency control theory.

U S

13

Thus, this structure can be usetul in proofs of serializability for action trees.

An augmented action tree (AAT), T, is a pair (S,D), where S is an action tree and D C sameobiects

is a partial order on datastepss which totally orders the datasteps for each object. In this case, we
write d_atgT for D. We extend action tree notation to T; for example, we write dglas_(gp_s, to denote
datastepsg. If T is an AAT, then let sibling-data, denote {(A,B) € siblings: (C,D) € data for some C €
desc(A), D € desc(B)}. If A € datasteps (x), then let v-data (A) denote {B € visible (A.x): (B,A) €
data, and B # A}.

The following is a technical lemma needed for the characterization theorem.

Lemma 8: Let T be an AAT. If there is a cycle of length greater than one in seq U
sibling-dataT. then there is a cycle of length greater than one in seqQ; U sibling-data.r.

Proof: Assume not. Choose a cycle, C, of minimum length greater than one, in seq U
sibling-dataT. There must be an action, A, on C with A ¢ verticesy. Let (B,A) and (A,C) be
the two pairs on C involving A. Then both pairs are elements of seq. Thus, (B,C) € seq and
B # C, since seq is a partial order. Removing A from C leaves a cycle with at least two
elements (B and C). having one fewer element than C. This contradicts the minimality of C.

O

I T = (S.D) is an AAT, then erase(T) is just the action tree S. We extend the definitions of visible,
live, dead, linearizing, induced, preds and serializable to an AAT, T, by applying them to erase(T). An
AAT, T, is data-serializable provided there exists p, a serializing partial order for T, with the additional
property that inducedT‘p is consistent with data.r. Data-serializability for AAT's provides a sulfficient
condition for correctness.

Lemma 9: Let T be an AAT. Let p be a linearizing partial order for T, x € obj, and A €
datastepsT(x). Assume that inducedTp is consistent with dataT. Then pred:?.T p(A) =
<<v-dataT(A); dataT».

Proof: Straightforward.

0O

Data-serializability for AAT's has a cyci¢ iree characterization. First, we give a definition which
says that the label of each access describes the correct object value which the access should see, it
the versiohs of objects are ordered according to the data, order. Formally, an AAT is
version-compatible provided for every x € obj, and every A € datasteps,(x). it is the case that
label (A) = result(x.s), where s = <(v-data (A); data,>>.

Theorem 10: An AAT, T, is data-serializable if and only if both of the following are

14

& true:

a. T is version-compatible.

b. There are no cycles of length greater than one in seq; U sibling-dataT.

Proof: Assume T is data-serializable, and obtain p, a serializing partial order for T for
which inducedT 0 is consistent with dataT.

alet A € datastepsT(x). s = <<v-dataT(A); dataT». Then labelT(A) =
result(x.predsT p(A)), by the definition of serializability, = result(x,s), by
Lemma 9.

b.seq; U sibling-data, C p. Thus, there are no cycles of length greater than
' one in seq, U sibling-data,.

Now assume a. and b. Lemma 8 implies that there are no cycles of length greater than
one in seq U sibling-data,. Let p be any partial order which totally orders all siblings and
is consistent with seq U sibling-data,. Then p is linearizing for T, aii inducedT'p is
consistent with dataT. We will show that p is a serializing partial order for T. Let x € obj, A

. € datasteps(x). We must show that label (A) = result(x.predsT'p(A)). Since T is version-
compatible. we know that label (A) = result(x,s), where s = v-data,; data,>>. Then
Lemma 9 implies thats = predsT'p(A). as needed.

O

6. An Algebra Based on Augmented Action Trees

U

-

In order to prove that an algorithm generates only correct operation sequences, it is helpful to
include the additional information present in AAT's. Thus, we define operations on AAT's,

o d

! E analogously to the definitions for action trees. Once again, we carry out the definitions within the
i algebra framework defined earlier. We define a new algebra A’ = <A', ¢', 11>, where A’ is the set of
t AAT's, o' is the trivial AAT which has a single vertex U with status ‘active’, and the operations in [T’
; correspond closely to the operations of .4, and are designated by the same names. (We will rely on

13

H
.
I

context to distinguish the two cases.) The only differences are that there is no global constraint
corresponding to C, and perform A, 'Ntroduces two additional preconditions and an additional

change. These new conditions can be thought of as capturing the abstract effect of a variant of
Moss' locking algorithm.

(d1) Precondition

15

(d12)LetB € datasteps,(x). BliveinT. ThenB € visibleT(A,x).

{d13) It Aislive in T, then u = result(x,s), where s = <<visibleT(A,x); dataT».

(d2) Effect
(d23) data, — data, U {(B,A): B € datasteps.(x)} U {(A,A)}.

Lemma 11:If Tis computable in A', then the following are true.

alfA€ vertices. and parent(A) € committed., then A € doneT.
b. It A € vertices; and (B.A) € seqand B # A, then B € done,.

c.U€ activeT.

d. i (BA) € data, then either Bisdead in T, or else B € visibleT(A).

e.lfA€ committed, and B € desc(A) N vertices then either B is dead in T or
elseB € visible(A).

Proof: Most of the arguments are straightforward. We argue cases d. and e.

b N d. It B = A, the result is immediate. If B # A, then the only way we get (B,A) € dataT is
] . by virtue of some perform Ay Event. That is, there exists T' such that T' = T, such that the
precondition tor some step perform Au is satisfied in T'. Thus, B is dead in T' or B €
visible,.(A). Therefore, Bis deadin T or B € visible (A).

e.lf B = A, the result is immediate. So assume A # B.Let A € committed,, B €
desc(A) N vertices., B live in T, and B¢ visibIeT(A). Then there exist C, D € desc(A) N
anc(B), for which C = parent(D), C € committed, and D € active;. But this contradicts

e m e B -

part a.
¥
o3 o
’ : Lemma 12: Let T and T' be computable in L', and assume that T T'.
a. vertices, C vertices,., committed, C committed,., aborted, C aborted,., and
data, C data,..
b.lfAE datasteps, then IabeIT(A) = IabelT.(A). ‘

. c. If A € datasteps; and (B,A) € data,, , then (B,A) € data,.

R d. It A € vertices,, then visible, (A) C visible.(A).

16

elfA€ verticesT and Aislivein T’ then Aislivein T.

t.If A = parent(B) and A € committed, and B € vertices,. , then B € done,.

Proof: The only case that takes some arguing is f. Let A = parent(B), A € committedT
andB€ verticesT. . Let T' be the result of ® applied to T, and let T be the result of ¥. Then
¥ contains a step # of the form commit A and Y& contains a step p of the form create,.
@ cannot precede p, since the precondition for p would be violated. So p precedes ».

’ Then the precondition for = implies that B € done.

0

Note that there is no correctness condition for AAT's explicitly mentioning serializability. This is

. because for AAT's, computability alone is sufficient to guarantee serializability of perm(T), as we 1
show in the next theorem.
Lemma 13:If T is computable in A’, then perm(T) is version-ccmpatible.

Proof: Let A € datastepswm(T)(x). We must show that u (= Iabeiwmm(A)) =
, result(x,s), where s = <<v-dataperm(T)(B); data perm(r)»‘ A is inserted into the tree by a
perform Au step =, so let the operation sequence producing T be written as ®a¥. Let T’
denote the result of @, and T the result of ®n. The preconditions for » show that
label,.(A) = result(xs'). where s’ = Kvisible;.(A,x); data,>>. By Lemma 12b and the
definition of perm(T), it follows that Iabelpermm(A) = resuit(x,s'). Thus, it suffices to show
thats = s'. Since both data,. and datape' are consistent with data, it suffices to show
that s and s’ contain the same elements.

m(T)

is the only element in T"" whichisnotin T', B € datasteps,.(x). Since A € verticesmmm =

, visibleT(U). and U ¢ abortedT (by Lemma 11), it follows that A is live in T.Since B €

: ﬁ visibleT(A), Lemma 6 shows that B is live in T. Thus, B is live in T', by Lemma 12e. The
; precondition for # implies that B € visibler(A,x), soB€s'.

|
.; First, let B € s. Then (B,A) € data, and so by Lemma 12¢, B € datasteps,.(x). Since A
i
i
|

Conversely, suppose B€ s'. Then B # Asince A ¢ vertices.. Then (B,A) € data,., 80
by Lemma 123, (B,A) € dataT. By Lemma 12d,B € visible (A,x). By Lemma 7, it suffices to

show that B € vertices perm(T) = visible(U). But B € visibleT(A) and A € visibIeT(U). 80
Lemma Sc suffices.
; o
Lemma 14: If T is computable in A', then there are no nontrivial cycles in seqm U
. 1 sibling-datawmm.

Proof: Assume the contrary: let (c,A,.....Ak =), k 2 2, be a minimum length cycle

17

such that (A A,) € seq perm(T) U sibling~dalapemm for alli, 0 < i < k-1. Let a sequence
& of operations be defined so that T is the result of ®. We will show that foreachi,0 <i <
k-1, there exists a prefix ¥, of ¢ such that if T' is the result of \Pi, then A, € done,. , and
A, ¢ done... If we fix i for which ‘lli is of maximum length, and let T' be the result of this
¥, then we see that A, ¢ done,.. But¥, . is no longer than V., so Lemma 12a implies

that A, € done.

T which is a contradiction.
Fix i.1f (AA.) € $eQ ey m(T)’ then ® has a prefix VY=, where w is a create,
‘e)

operation. Let T' be the result of ¥. The preconditions for = imply that Ai € doneT.. Th'ﬁs. i
\Pi = ¥ suffices.

Now assume that (AA, |) € sibling-data Then there exist B € desc(A), (o} 3
desc(A,) with (B.C) € data perm(T)’ perm(T)’ it follows that {anc(B) U
1 anc(C)) N proper-desc(U) C committed,. Now, ® has a prefix Vo, where # is a
performc'u step. Let T' be the result of ¥, and T" the result of ¥#. Lemma 12¢ implies
that (B,C) € data,., so that B € datasteps,.. Since B is live in T (using Lemma 11c),
Lemma 12e implies that B is live in T'. Then the precondition for = implies that B €
visibIeT.(C), which means that A, € anc(B) N proper-desc(ica(B,C)) C committedT. -
done,.. We must show that A, '3 done,.; if we can do this, then taking ¥, = ¥ yields the
result. Assume A _, € done;. Then let D be the lowest ancestor of C for which D €
done,.; it must be the case that D € anc(C) N proper-desc(ica(B,C)) C committed, so D €
committed,.. Since C ¢ vertices,. . we know that D # C. Let E be the single element of
children(D) N anc(C). Then E ¢ done,.. Then E € vertices, by Lemma 12f. This means C
€ vertices,. Thisis a contradiction.

perm(T)’
Since B, C € vertices

(]

i

§ Theorem 15: If T is computable in A', then perm(T) is data-serializable.
! Proot: Immediate from Lemma 13, Lemma 14 and Theorem 10.

o

Next, we show that it is sufficient to restrict attention to correctness of operation sequences for
AAT's. \/e define a mapping h from A’ to A as follows. If T is an AAT, then h(T) = {erase(T)}. f = is
in 1", then h(w) is just the operation in I1 with the same name.

Lemma 16: his a simutation of A by A'.

Proof: (a) and (c) are immediate. To see (b), the first conclusion foliows immediately
from the fact that a' € domain(w') (since only additional constraints are added for .A'); note
that Theorem 15 implies that the C-constraint is always satistied. The second conclusion

| is then straightforward. Thus, h is a possibilities mapping. Lemma 3 shows that h is a

e em b ——

simulation.

a

7. An Algebra Based on Version Maps

In this section, we introduce another data structure. This one records, for each object and action,

the sequence of accesses to the object whose resuit is available to the action.

A version map is a partial mapping V from obj x act to sequences of accesses, such that the

following properties are satisfied:
- V(x,U) is defined for all x,
- each V(x,A) consists of accesses to x,
- for each x, if V(x,A) and V(x,B) are both defined, then either A € desc(B) or B € desc(A),
-if V(x,A) and V(x,B) are both defined and B € desc(A), then V(x,B) is an extension of V(x,A).

If A is the least action for which V(x,A) is defined, then we call A the principal action for x in V; in
this case, if result(x,V(x,A})} = u, we say that u is the principal value of x in V.

We define another algebra, A" = <A™, ¢", I1", as follows. A’ is the set of pairs (T,V), where T is
an AAT and V is a version map. o' consists of the triviat AAT consisting of a single node U with status
"active’, and the version map which has V(x,U) equal to the empty sequence, for all x, and is otherwise

undefined. " consists of the six operations defined below in (a)-(f).

w

in all the operations to follow, we assume that A € act - {U}. Operations (a)-(c) are identical to
(a)-(c) of A'.

o g

B\

(d) perform Av' A € accesses, x = object(A), u € values(x)

.
g (d1) Precondition

i (d11) A € active,.

5: (d12) {B: V(x,B) is defined} C proper-anc(A).
',.;_ , {d13) uis the principal value of x in V.

£ (d2) Effect

(d21) status,(A) — ‘committed’.

(d22) label, (A) — u.

(d23) data, — data, U {(BA):BE accessesT(x)) U {(A.A)}.
(d24) V(x,A) — V(x,B) © (A).

{e) release-tock ax' X € Obj

(e1) Precondition
(e11) V(x,A) is defined.
(e12)A€ committedT.

(e2) Effect
(e21) V(x,parent(A)) — V(x,A).
(e22) V(x,A) — undefined.

h lose-lock",. x € obj

(f1) Precondition
(f11) V(x,A) is defined.
(12) Aisdeadin T.

(t2) Effect
(f21) V(x,A) — undefined.

Lemma 17: If (T,V) is computable in 4", then the following are true.

a. If V(x.A) is defined, then A € vertices..

b.fB € datastepsT(x) and B is live in T, then there exists A € anc(B) with V{(x,A)
defined and B an element of V(x,A).

c. It V(x,A) is defined, then each element of V(x,A) is in visibIeT(A).]

d. It V(x,A) is defined, then the elements of V(x,A) are in data, order.

Proof: Straightforward. We argue b., for example. Immediately after an operation
pe riormB' o occurs, we see that V(x,B) is defined, and B € V(x,B). Assume inductively that
there is some ancestor, C, of B with V(x,C) defined and B € V(x,C). Since B remains live,
there are no steps of the form lose-lockc'x. Thus, if V(x,C) is ever changed, it must be
because of a release-lock step. There are two possibilities. First, the change could occur
because of a release-lockc'l step. But such a step causes V(x,parent(C)) to take on the
old value of V(x,C), thereby preserving the needed property. Second, the change could
occur because V(x,C) gets redefined to be the previous value of V(x,D), where D €
children(C). But because the successive sequences are extensions of each other, B is an
element of V(x,D) as well. Thus, the needed property is preserved in this case also.]

a

Define a mapping h’ from A” to A’ as follows. h’ maps (T,V) to {T}, and maps operations (a)-(d) to
operations of the same name, and operations (e) and (f) to A.

ST N&J

e e B amee — =

=%,

w"‘”!k ,};W-.-,;., e .

20

Lemma 18: h'is a simulation of L' by A",

Proof: it suffices to show that h' is a possibilities mapping. The first and last properties
are easy to check. We consider the second property. Let #’ € I1", where h'(g') = # € IT".
Then «' is either of the form create A commit,, abort, or perform Ay In the first three
cases, the second property is easy to check. So assume that =’ is of the form perform Av
Assume (T,V) is computable in A" and =’ is defined on (T.V), yielding (T',V'). We must
show that perform A {i.e. the operation of A’') is defined on T. Let x = object(A).

Condition (d11) for A’ follow immediately from the corresponding condition for A".
We consider (d12). Let B € datasteps,(x), and assume that B is live in T. Since (T,V) is
computable in A", Lemma 17 implies that there is some C € anc(B) for which V(x,C) is
defined and for which B is an element of V(x,C). Then Lemma 17 implies that B €
visible,(C). Since ' is defined on (T.V), (d12) for A" implies that C € anc(A). Since A €
vertices, Lemma 5 implies that B € visible_(A), as needed.

Next, we consider (d13). Assume Aislivein T,and lets = <<visibleT(A,x); dataT». We
must show that u = result(x,s). Let B be the principal action for x in V. Condition (d13) for
A" implies that u = result(x,V(x,B)). It suffices to show that s and V(x,B) aré identical.
Since the elements of V(x,B) are in data, order (by Lemma 17), it suffices to show that s
and V(x,B) contain the same set of elements.

Firstassume Cisins,ie. C€ visible(A,x). Since Ais live in T. Lemma 6 implies that C
is live in T. Then Lemma 17 implies that there exists D € anc(C) for which V(x,D) is defined
and C is an element of V(x,D). Since B is the prir.cipal element for x in V, the sequence
extension property of the definition of version maps implies that C is also an element of
V(x,B).

Conversely, assume that C is an element of V(x,B). Lemma 17 implies that C €
visible((B). Condition (d12) for A" implies that B € anc(A). Thus,C€ visible (A).

It is easy to check that the changes correspond correctly, once we know that the
definability conditions correspond. Therefore, h' is a possibilities mapping.

a
Theorem 19: h © k' is a simulation of A by A".
Proof: Immediate from Lemmas 16, 18 and 1.

a

21

8. An Algebra Based on Value Maps

In this section, we introduce another data structure. This one records, for each object and action,
the latest value of the object which is available to the action.

A value map is a partial mapping V from obj x act to values(obj), such that the following properties
are satisfied:

- V(x,U) is defined for all x,

- each V(x,A) € values(x), and

- for each x, it V(x,A) and V(x,B) are both defined, then either A € desc(B) or B € desc(A).

! If A is the least action for which V(x,A) is defined, then we call A the principal action for x in V; in 1
this case, if V(x,A) = u, we call u the pringipal value of x in V.

We define another algebra, A" = <A™, ¢"", [1"""), as follows. A'" is the set of pairs (T,V), where T
is an AAT and V is a value map. ¢"' consists of the trivial AAT consisting of a single node U with
status 'active’, and the value map which has V{x,U) equal to init(x), for all x, and is otherwise
undefined. 1" consists of the six operations defined below in (a)-(f).

In all the operations to follow, we assume that A € act - {U}. Operations (a)-(c). (e) and (f) are
identical to the corresponding operations of .. Operation (d) is also identical, except for the change
indicated below.

(d2) Effect
‘ (d24) V(x,A) — update(A)(u).

e e Btne e

if V is a version map, then let eval(V) be the value map defined on exactly the same domain, so
: that eval(V)(x,A) = result(x,V(x,A)).

Lemma 20: Let V be a version map, x € obj. Then the principal action for x in V is the
same as the principal action for x in eval(V), and the principal value of x in V is the same as
the principal value of x in eval(V).

Proof: Straightforward.

(|

Define a mapping h"” from ™' to A" as follows. Let h"'(T,V) = {(T,W): eval(W) = V}. h" maps all
operations to operations of the same name.
N Lemma 21: h" is a simulation of A" by A"'.

R
e .

22

Proof: It suffices to show that h" is a possibilities mapping. The first and last
properties are easy to check. We consider the second property. Let #’ € [1"". If n' is one
of (a)-(c), (e) or (f), then the second property is obvious.

Assume 7’ is perform Av Assume (T,V) is computable in A", (T,W) € h"'(T V), (T.W)
is computable in A", #’ is defined for (T,V) and (T",V') = #'(T,V). Lemma 20 implies that
the definability condition holds, i.e. that # = perform Au is defined on (T.W). It follows
from the eftects of the two operations that #(T,W) = (T',W') for some version map W'. |t
suffices to show that eval(W’) = V'. Since eval(W) = V, we only need to consider the
values which change because of the present operation, i.e. we need to show that
result(x,W'(x,A)) = V'(x,A). But result(x,W'(x,A)) = result(x, W(x.B) ¢ (A)), where B is the
principal action for x in W, = update(A)(result(x,W(x,B))). = update(A)(V(x.B)) since
eval(w) = V.But B is the principal action for x in V, by Lemma 20, so u = V(x,B).
Therefore, the latest term in the extended equality is equal to update(A)(u). which is equal
to V'(x,A) by definition.

a
Theorem 22: h e h' e h" is a simulation of A by A"".

Proof: immediate from Lemmas 19, 21 and 1.

0

9. The Algorithm

A slightly simplified version (which doesn't distinguish read and write steps) of Moss’ algorithm is

described using a distributed algebra.
Let [k] denote {1,...k}.

We fix a particular k, as the number of nodes. For convenier.ce, we designate the nodes by
identifiers in [k].

Let home: (act - {U}) U obj — [k], with home(A) = home(object(A)) for all A € accesses. Thus,
home partitions the actions and objects among the nodes. Let grigin: (act - {U}) — [k] be defined so
that origin(A) = home(A) if parent{A) = U, and = home(parent(A)) otherwise.

In order to describe the local state of each node, it is convenient to define a generalization of

action trees. Thus, we define an action summary T to consist of components Leﬂjs_e_sT. active,,
committed., and aborted., where vertices, is any finite subset of act (not necessarily closed under

23

the parent operation), and the remaining three components form a partition of verticesr. The notation
d_mT and status, is also extended in the obvious way. If T and T' are action summaries or action
trees, w e say that T < T' provided verticesT Cc vertices.., and correspondingly for committedT and
abortedT. We also define T = T U T’ so that verticesT,. = vertices, U verticesr. and similarly for
committed,.. and aborted....

We describe the algorithm as yet another algebra, B = <B, 7, P>, which is distributed over | = [k]
U {'bufter'}. The components are defined as follows. B is the Cartesian product of B, wherei € 1. Ifi
€ [k], then B, consists of the values of variables i.T which can contain an action summary, and i.V,
which can contain a value map defined only for pairs (x,A) having home(x) = i. lif i = 'buffer’, then B.I
consists of the values of variables Mi‘ j € [k]. each of which can contain an action summary. (The
contents of M,. are intended to denote information which has been sent to node j.)

7 is a vector of initial states for all the components. If i € [k], then 7, has i.T initialized as the trivial
action summary. having no vertices, and i.V initialized so that i.V(x,U) = init(x) for all x with home(x)

= i, and otherwise undefined. If i = 'buffer’, then 7, has each Mi equal to the trivial action summary.

The algorithm has eight kinds of operations. Six correspond closely to the six operations of A"
- four record the creation, commit and abort of actions and the performance of data accesses and two
manipulate locks. The other two correspond to the sending and receiving of messages. The
operations are listed below. As usual. we present them by listing a precondition and the effect on the
state. In addition, we define d(n). the doer of each step.

In all cases, we assume that A € act - {U);
(a) createi A origin(A) = i

{a1) Precondition
(a11)A ¢ i.vertices,.
(a12) If parent(A) # U, then parent(A) € i.vertices; - i.committed.r.
(a13) 1t (B,A) € seqand B = A thenB € i.done,..
(a2) Effect
(a21) i.vertices, « i.vertices, U {A}.
(a22) i.statusT(A) + 'active’.

(a3) Doer:i

(b) commit, ,, A € accesses, home(A) = i

(b1) Precondition
(b11) A € i.active,.
(b12) children(A) N i.vertices . - i.done,.

22

Proof: It suffices to show that h" is a possibilities mapping. The first and last
properties are easy to check. We consider the second property. Let #' € I"". If 7' is one
of (a)-(c), (e) or (f), then the second property is obvious.

Assume 7' is perform Av Assume (T,V) is computable in A", (T,W) € h'"'(T V), (T.W)
is computable in 4", ' is defined for (T,V) and (T",V') = #'(T.V). Lemma 20 implies that
the detinability condition holds, i.e. that » = performAlu is defined on (T, W). It follows
from the effects of the two operations that #(T,W) = (T W') for some version map W'. it
suffices to show that eval(W') = V'. Since eval(W) = V, we only need to consider the
values which change because of the present operation, i.e. we need to show that
result(x, W'(x.A)) = V'(x,A). But result(x,W'(x,A)) = result{x.W(x.B) ° (A)), where B is the
principal action for x in W, = update(A)(result(x,W(x,B))). = update(A)}{V(x,B)) since
eval(W) = V.But B is the principal action for x in V, by Lemma 20, so u = V(x,B).
Therefore, the latest term in the extended equality is equal to update(A)(u), which is equal
to V'(x.A) by definition.

O
Theorem 22: h o h' e h" is a simulation of A by A"

Proof: Immediate from Lemmas 19, 21 and 1.

a

9. The Algorithm

A slightly simplified version (which doesn't distinguish read and write steps) of Moss' algorithm is
described using a distributed algebra.

Let [k] denote {1,....k}.

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by

identifiers in [k].

Let home: (act - {U}) U obj — [k}, with home(A) = home(object(A)) for all A € accesses. Thus,
home partitions the actions and objects among the nodes. Let grigin: (act - {U}) — [k] be defined so
that origin(A) = home(A) if parent(A) = U, and = home(parent(A)) otherwise.

In order to describe the local state of each node. it is convenient to define a generalization of

action trees. Thus, we define an action summary T to consist of components vertices.., ac&imr
committed.. and ﬁb.QﬁﬂT. where verticesT is any finite subset of act (not necessarily closed under

24

(b2) Eftect
{(b21) i.statusT(A) +— ‘committed’.

(b3) Doer: i
(c) abort, ,. A € accesses, home(A) = i

(c1) Precondition
(CINAE i.active .

(c2) Effect
(c21) i.statusT(A) +~ "aborted'.

(c3) Doer: i

(d) perform, , . A € accesses, x = object(A), u € values(x),
home(A) = i, home(x) = i

(d1) Precondition
(d11)AE€ i.active..
(d12) {B:i.V(x.B)} is defined} C proper-anc(A).
(d13) u is the principal value of xin i.V.

(d2) Effect
(d21) i.statusT(A) +~— 'committed’.
(d22) i.V(x.A) — update(A){u).

(d3) Doer: i

(e) release-locki Ax' home(x) = i

(e1) Precondition
(e11)i.V(x,A) is defined.
(e12)A € i.committed,.

(e2) Effect
{e21)i.V(x,parent(A)) — i.V(x,A).
{e22)i.V(x,A) — undefined.

(e3) Doer: i
(f) lose-locki'A'I. home(x) = i
(f1) Precondition
(f11)i.V(x,A) is defined.

(f12) anc(A) N i.abortedT ® 3.

{f2) Etfect
{f21) i.V{x,A) — undefined.

A TS i Y SENP S

(f3) Doer: i

(g) send.

T T' an action summary

(g1) Precondition
g1 T <LiT.

(g2) Effect
(921) Mi — Mi uT.

(g3) Doer: i
(h) te\':eivei T T' an action summary

(h1) Precondition
‘ h1)T < Mi.

(h2) Effect
(h21)iT —iTUT.

(h3) Doer: buffer

‘. That is, any communication is allowed at any time, which ser;ds any of the action summary
information fromito j.
Lemma 23: 9B is an algebra, which is distributed over i using d.
Proof: Straightforward.

0

Now define an interpretation h'"’ from B to A’"' by mapping the first six types of operations to the
operations of the same name, suppressing the index in [k], and the other two types of operations to A.

If b € B, then we add "[b]" to the end of a variable name to denote the value of that variable in
state b. |

For each i € |, we define a mapping h, from B to HA'"') as follows. If i € [k], then (T,V) € h,(b)
exactly if (T,V) is computable in A"’ and the following are true:

- vertices, M {A: origin(A) = i} C i.vertices,[b] C vertices,.

- committed, N {A: home(A) = i} C i.committed,[b] C committed,.

- aborted; M {A: home(A) = i} C i.aborted.[b] C aborted,.

26

- i.V[b} is the restriction of V to {(x,A): home(x) = i}.
iti = "buffer’, then (T.V) € h,(b) exactly if (T,V) is computable in A" and Mi[b] < Ttoreachj € [k].

TV € hi(b). then we also say that (T,V) is j-congistent with b.
Lemma 24:Foralti€l, 0™ € h,(7).
Proof: Immediate from the definitions.

O

Lemma 25: Assume i € |. Assume 7' € P, d(m) = i, 7w = h''(¢’) € II'"", aand a’ are
computable in A" and B, respectively, a € h,(a’) and a’ € domain(#'). Then a € |
domain(w). '

Proof: Let abe (T,V).

First, assume that #' is ctealem, so that = is create,. Then origin(A) = i. Since a' €
domain(x'), A € i.vertices,[a’]. Since (T.V) is i-consistent with a', A ¢ vertices,, thus
showing (a11). It parent(A) = U, then the fact that (T.V) is computable and Lemma
17 imply that parent(A) € active,, thus showing (a12) for this case. On the other hand, if

. parent(A) # U, then the precondition for #' shows that parent(A) € i.verticesT[a']
. i.committedT[a']. The fact that (T,V) is i-consistent with a' implies that parent(A) €
vertices - committed,. Thus, (a12) holds. If (B,A) € seq and B # A, then the precondition
for #' shows that B € i.doneT[a']. The fact that (T,V) is i-consistent with a' implies that B €
done,, thus showing (a13).

! Second, consider »’ = commiti’ A SO that = is commit,. The precondition for =’

shows that A € i.activeT[a‘]. The tact that (T,V) is i-consistent with a' implies that A €

. active;, thus showing (b11). The precondition for #' shows that children(A) N

s i.verticesT[a'] C idone,[a’]. The fact that (T,V) is i-consistent with a' implies that
children(A) N vertices; C done, thus showing (b12).

Third, assume o' = aborti A SOthat wis abortA. This case is similar to the first half
of the previous case.

Fourth, assume #' = perfom\"m, so that « is peﬂorm"u. Then home{A) =
i. Assume object(A) = x, so that home(x) = i.(d11) is argued as in the preceding two
cases. We show (d12). Choose B so that V(x,B) is defined. Since (T,V) is i-consistent with
a' and home(x) = i, i.V(x,B)[a'] is also defined. The precondition for w’ implies that 8 €
proper-anc(A), as needed. Next, we show (d13). The precondition for w' implies that u is
the principal value for x in i.V[a']. Since (T,V) is i-consistent with a', u is also the principal
value for x in V, as needed.

e

2, S

27

It =" is one of (e) or (). then #n' involves some x with home(x) = i. Assume that #’
involves A. The precondition for »' implies that i.V(x,A)[a’] is defined. Since (T,V) is i-
consistent with a', it follows that V(x,A) is defined, thus showing both (e11) and (f11).

if o' is a release-locki Ax Step. then the precondition for #' implies that A €
i.committed, [a']}. Since (T.V) isi-consistent witha', A € committed,, thus showing (e12).

Finally, it o' is a lose-lock, , . step, the precondition for #' implies that anc(A) N
i.abortedr[a'] # @&. Since (T,V) is i-consistent with a’, it follows that A is dead in T, thus
showing (112).

a

Lemma 26: Assume i, j€E L Assume #' € P,d(n’) =i, 7 = h'’(#’) € OP'",aand a' are
computable in A" and B, respectively, a € h(a’) n hi(a’). and a' € domain(#'). Ifb' =
a'(a’), then n(a) € hi(b').

Proof: Leta = (T,V)and #(a) = (T'.V'). Lemma 25 implies that a € domain(x).

If j # i, then it is easy to see that all the containments are preserved, since the sets of
actions on the right sides are only increased, while the sets on the left sides are
unchanged. The property involving V is also easily seen to be preserved. So assume j =
i. We consider the six kinds of operations in turn.

First, assume #' is of the form createi’A. commitm or aborti‘A. ThenV' = V,and T'
is exactly like T except that A is added to verticesT. committedT or abortedT as appropriate.
Also, b’ is just like a’ except that A is added to i.verticesT, i.committedT, or i.abortedT, as
appropriate. Since (T,V) is i-consistent with a', it is easy to see that all the containments
change in such a way as to insure that (T",V') is i-consistent with b'.

If »’ is of the form perlormi' Ay’ then home(A) = i. Let x = object(A). Then home(x)
= i. T' is just like T except that A is added to committed, and is given label u, and dataT is
augmented with all pairs in {(B,A): B € datasteps (x)} U (A,A). V'is just like V except that
V'(x,A) is defined to be update(A)(u). b' is just like a' except that A is added to
i.committed,, and i.V(x,A) is defined to be update(A)(u). Since (T,V) is i-consistent with a',
it is easy to see that (T",V') is i-consistent with b’: most of the properties are immediate.
We just check the last property; the only change involves A. We have already noted that
i.V(x,A)[b'] = update(A)(u) = V'(x,A). This is as needed.

If »' is of one of the forms (e) or (f), then T' = T and i.T[b’'] = i.T[a'). Thus, it is clear
that the containments are all preserved. It is aiso easy to check that the final property is

e e L m e e e

—

28
preserved.
O
Lemma 27: Assume i, j € |. Assume o' € P, d(#") = i, h(#’) = A, a and a' are

computable in A" and B, respectively, a € hi(a’) n hj(a‘). and a' € domain(#'). fb' =
a'(a’).thena € hi(b').
Proof: Leta = (T,V).

First, assume that ' is sendi'i.’T.. It j # 'buffer’, then b‘i = a'i. and the conclusion is
immediate. So assume that j = 'buffer’. Since (T,V) is j-consistent with a', each action
summary M[a'} < T.The precondition for #' implies that T' < i.T[a’]. Since (T.V) is
i-consistent with a', it follows thati.T[a'] < T, and hence T' < T. Now, each M[b'] < M[a’]
U T'. Therefore, each M|[b’] < T, as needed.

Next, assume that =’ is of the form receivei..T.. so thati = 'buffer’. The only nontrivial
caseisj = i'. We must show thatj.T{b'] < T.But|.T[b'] = |.T[a'] U T'. The j-consistency
of (T.V) with a' shows that j.T[a'] < T.The precondition for 7' shows that T' < Mi[a‘].
Since (T,V) is i-consistent with a’, Mi[a‘] < T.Thus, T' < T.Therefore, j.T[b'] < T, as
l . needed.

O
Lemma 28:h"" and h,.i € |, form a local mapping from %8 to A™".

S Proof: Immediate from Lemmas 24, 25, 26, and 27.

a

Now extend h''' to B U P, by defining h'"'(b) = ﬂi €l

Lemma 29: h'"' is a simulation of A" by 8.

h,(b).

Proof: Iimmediate by Lemma 28, Lemma 4 and Lemma 3.

0O

We are now ready to prove the main correctness theorem.
Theorem 30: The mapping h e h' e h” o h'' is a simulation of .A by B.
Proof: Immediate from Lemma 29, Lemma 1 and Theorem 22.

@]

R

10. Acknowledgements

Many other people have contributed their ideas and efforts to this work. Barbara Liskov
suggested formal treatment of this area, and monitored proposed formalizations for their faithfulness
in representing the behavior of the Argus system. John Goree used a much earlier draft of the current
paper as a starting point for the work in his Master’s thesis; in the process of writing his thesis, he
discovered several major ways of clarifying the ideas of this paper. Many of the ideas Gene Stark is
developing for his thesis have found their way into the present paper. Mike Fischer discussed some
of the early attempts at formalization, and contributed several insightful suggestions. Bill Weihl and
Gene Stark contributed helpful criticisms of early drafts.

.
i
i
'
1
+

(BG]

[EGLT]

[G)

(KP]

[La]

(LiS]

M]

[Ra]

Bernstein, P. and Goodman, N.
Concurrency Control Algorithms for
Multiversion Database Systems

1 ACM SIGACT-SIGOP. mposium on
Principles of Distribyte mputin

{ta nada, A 18- 1

op. 209-215.

Eswaren, K. P., Gray, J. N., Lorie, R. A.
and Traiger, . L.

The Notions of Consistency and Predicate
Locks in a Database System,

CACM, Vol. 18, No. 11, November, 1976,

Goree, John

Internal Consistency of A Distributed
Transaction System with Orphan Detection
M.S. Thesis, MIT Laboratory for Computer Sci.,
Cambridge, MA. 1982 in progress.

Kanellakis, P. and Papadimitriou, C.

On Concurrency Control by Muliple Versions
Proceedings of the ACM Symposium on
Principles of Databas m.

March 29-31, 1982 . 76-

Lamport, L.

Time, Clocks and the Ordering of Events
in a Distributed System,
CACM, Vol. 21, No. 7, July, 1978.

Liskov, B. and Scheifier, R.

Guardians and Actions: Linguistic Support for
Robust. Distributed Programs,

1 Ninth Annyal ACM SIGACT- A

mposium on PRINCIP
PROGRAMMING LAN All

January 25-27, 1982, pp. 7-19.

Moss, J.E.B.

Nested Transactions: An Approach to Reliable
Distributed Computing, Ph.D Thesis,

T ical Report MIT -

MIT Laboratory tor Computer Science,
Cambridge, MA. 1981,

Randell, B.
Systern Structures for Software Fauit Tolerance.

[Re]

(s]

31

Proc. Int. Conf.on Reliable Softw. (April 1975),
SIGPLAN Notices Vol. 10 Nr. 6, pp. 437-457.

Also in IEEE Trans. Softw.
Eng. Vol. 1 Nr. 2 (June 1975 . 220-232.

Reed, D.P.

Naming and Synchronization in a Decentralized
Computer System, Ph.D Thesis,
Technical Report MIT/LCS/TR-208,

MIT Laboratory for Computer Science,
Cambridge, MA. 1978.

Stark, E.

Foundations of a Theory of Specification for
Distributed Systems, Ph.D Thesis, MIT
Laboratory for Computer Science,
Cambridge, MA. 1982 in progress.

DATE
FILMED

